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COMMENTARY

Metabolic plasticity meets gene regulation
B. Bishal Paudela,b and Vito Quarantaa,b,1

Tumor metabolism has been investigated as an ex-
ploitable avenue for treatment in the last several years.
The link between tumor and metabolism traces its
origin to a seminal observation by Otto Warburg,
almost a century ago, that cancer cells, regardless of
oxygen availability, convert most intracellular glucose
to lactate—that is, aerobic glycolysis (1). This elevated
glycolytic state of cancer cells has been elegantly
exploited to detect tumors and their response to
drugs by positron emission tomography through the
use of fluorodeoxyglucose (2). Originally, tumor cells
were thought to have dysfunctional mitochondria, but
accumulating evidence suggests that they utilize gly-
colysis, oxidative phosphorylation, or both, depending
on context unrelated to the integrity of mitochondria

(3). Additionally, cancer cells can switch their metabolic
phenotypes during tumor progression and metastasis
and/or in response to external perturbations (4). This
metabolic plasticity provides both the energy and the
necessary intermediates for biosynthetic processes re-
quired for tumor growth. Recently, this “deregulation
of cellular energetics” has been recognized as an emerg-
ing hallmark of cancer (5).

Although our understanding of metabolic plastic-
ity has increased over the years, the relationship
between metabolism and gene regulatory networks
(GRNs) remains understudied. In PNAS, using a systems-
level approach, Jia et al. (6) explore the links between
metabolism and gene regulation. Their key observation
is that differential activity of the master regulators AMP-
activated protein kinase (AMPK) and HIF-1 give rise to
distinct metabolic phenotypes in cancer. Furthermore,
based on experimentally validated model predictions,
they demonstrate that cancer cells may exhibit addi-
tional metabolic states not usually present in normal
cells, termed high-high or low-low. This intriguing
conclusion challenges the conventional dichotomous
classification of tumor metabolism as either glycoly-
sis or oxidative phosphorylation (OXPHOS) and sug-
gests novel avenues of experimentation.

Metabolic pathways are interconnected and flexi-
ble, providing tumor cells with the property to repro-
gram their metabolism and maintain redox balance
under changing environments. Such metabolic flexi-
bility in a tumor becomes a clinicians’ nightmare, judg-
ing from recent therapeutic strategies targeting
cancer metabolism that have proved to be largely in-
effective. At least in part, these shortcomings may be
overcome by considering metabolic pathways and
their regulators from a systems perspective. However,
the complexity of metabolic network topology can be
overwhelming to the systems biologist, due to the lack
of experimentally measured kinetic parameters, reac-
tions happening at different timescales, and the con-
vergence of diverse reactions on one metabolite.
Furthermore, metabolic network performance may
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Fig. 1. Metabolic landscape of normal and cancer cells. (A) Transcriptomics and
metabolomics (end-product metabolites) analyses show the coexistence of
three distinct metabolic phenotypes: glycolytic (W), oxidative (O), and high-
high, or hybrid (W/O) states in cancer cells, whereas normal cells exhibit only
two states. (B) External perturbations lead to metabolic reprogramming in
cancer cells. (Left) glycolytic inhibition increases the O andW/O states. (Middle)
OXPHOS inhibition increases the W and W/O states. (Right) Stable HIF-1 or low
mitochondrial ROS (mtROS) induces the metabolic low-low phenotype.
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be heavily biased by GRNs, via differential regulation of enzyme
gene expression depending on context.

To render this complexity manageable, a possible approach is
to construct a simple framework that reduces the size of an
extensive regulatory circuit to essential components, and yet
captures its basic principles and overall network behavior. The
study by Jia et al. (6) provides a modeling framework which distills
complex molecular steps of metabolism into a three-node,
coarse-grained network and connects GRN feedback that may
regulate each node grouping. They show that a minimum network
consisting of the AMPK:HIF-1:reactive oxygen species (ROS)
three-node circuit and three metabolic pathways, while greatly
reducing chemical reactions to consider, explains key experimen-
tal observations and describes the coupling of gene expression
with pathway activity. The work builds upon a recent study by Yu
et al. (7) that demonstrated the coexistence of three metabolic
states (glycolytic, oxidative, and hybrid) in cancer cells, in contrast
to normal cells that exhibit only two (glycolytic and oxidative) (Fig.
1A). Results show that a hybrid state, specific only to cancer cells,
might arise due to cancer cells having different mitochondrial ROS
(mtROS) production and HIF-1 degradation rates compared with
normal cells. Having identified three clusters from steady-state
solutions in cancer cells, Jia et al. (6) proceeded to characterize
each metabolic node, and observed unique metabolic pathway
dependencies. The glycolytic state, referred to as W state, is char-
acterized by high HIF-1, high glycolysis, low AMPK, and low
OXPHOS. The oxidative O state is opposite (low HIF-1, low gly-
colysis, high AMPK, and high OXPHOS). The hybrid state (W/O)
exhibits high activity for all. The W and O steady-state solutions,
predicting the association of high HIF-1 with high glycolysis (W)
and high AMPK with high OXPHOS (O), are consistent with recent
literature (8), providing support for the three-node model. The
hybrid state was a novel prediction (7), deserving additional stud-
ies that Jia et al. appropriately perform (see below).

The third node in the model, ROS, is not a gene product, but
rather by-products of mitochondrial respiration (mtROS) or NADPH
oxidase activity. Although understated in their paper, this was an
intriguing choice by Jia et al. (6). The cellular response to ROS is
thought to be hormetic (9) (i.e., it exhibits biphasic characteristics):
at low ROS levels it may elicit sustained network signaling, while at
high ROS levels, it induces oxidative stress. Thus, the ROS node in
the Jia et al. model likely covers a broad spectrum of cellular pro-
cesses, quite effectively it would appear, given the realistic predic-
tions from the model. It certainly warrants further, more in-depth
consideration.

How stable are the W, O, and hybrid W/O metabolic
phenotypes? How do they adapt under perturbations? Given
the poor performance of metabolic inhibitors in (pre)clinical
studies, there is a growing interest in understanding how cancer
cells rewire their metabolism under pressure. For example, recent
studies show that a subset of BRAF-mutated melanoma cells, in-
sensitive to BRAF inhibitors, can activateMITF-driven expression of
PGC1a and hence mitochondrial respiration to evade therapy (10).
Others have established that the effects of BRAF inhibitors are
maximized when melanoma cells are heavily reliant on glycolysis
and/or when forced to solely utilize glycolysis by depleting mito-
chondria (11, 12). Together, these studies suggest that amputating
the ability of cancer cells to adapt metabolically might enhance the
therapeutic benefits of clinical drugs. To analyze the stability of
metabolic phenotypes under external perturbations, Jia et al. (6)
utilize their modeling framework and examine changes in pheno-
types by varying HIF-1 degradation rate and mtROS production

rate. Interestingly, they observe that a more stable HIF-1 (lower
degradation rate) gives rise to a higher percentage of the W and
W/O states and a lower percentage of the O state (Fig.1B, Left). In
contrast, a high mtROS production rate stabilizes the O and W/O
states, while depleting the W state (Fig.1B,Middle). Both perturba-
tions led to a more stable W/O state, while exhibiting opposite
effects on the others. Together, the results reported here could
explain initial failures in the use of metabolic inhibitors in (pre)clin-
ical studies and open new research questions into exploring the
importance of the W/O state in tumor progression, metastasis,
and drug resistance.

The study by Jia et al. provides a modeling
framework which distills complex molecular
steps of metabolism into a three-node, coarse-
grained network and connects GRN feedback
that may regulate each node grouping.

A laudable aspect of Jia et al.’s (6) study is their use of bio-
informatics approaches to generate data that inform mechanistic
mathematical modeling. In general, one or the other is present in
systems biology literature. With the rise in high-throughput
“omics” datasets, there is no question that bioinformatics ap-
proaches should be the first step in any systems-level project.
This coupling will no doubt strengthen our understanding of
gene regulation, feedback loops, and networks as a whole.
Jia et al. use transcriptomics and metabolomics data from
breast cancer (BC) patients to explore activity of the master
regulators AMPK and HIF-1 in their model within physiologi-
cally relevant conditions.

From previously defined signatures of AMPK andHIF-1 activity,
the authors show that key metabolic features of multiple types of
tumors could be captured. In particular, the comparison of
BC samples with corresponding benign tissue indicates that there
is an elevated glycolytic activity in BC samples. Furthermore, there
is a significant heterogeneity in both AMPK and HIF-1 activity in
BC samples compared with the normal tissue samples. Together,
these results suggest that cancer cells exhibit heterogeneity in
their metabolic activity, which may form the basis for metabolic
adaptation under harsh conditions such as drug exposure.

From the metabolomics screen, Jia et al. (6), however, did not
observe specific metabolic states, except that BC samples exhibit
a higher abundance of most metabolites. This clear lack of asso-
ciation between metabolite abundance and metabolic activity
could be due to the highly unstable nature of many intermediate
metabolites and the cross talk between metabolic pathways. The
authors show instead that end-product metabolites such as lac-
tate classify BC samples into three distinct metabolic states: W, O,
and W/O. They further evaluated the expression of key enzymes
to classify metabolic pathway activities and show that three met-
abolic clusters emerge, with each cluster exhibiting distinct pat-
terns of enzyme expression and a strong association with AMPK/
HIF-1 activities, consistent with their model predictions. These
findings were consistent even at the single-cell level, which further
corroborates the coexistence of distinct metabolic states in cancer
cells. To move beyond statistical association, the authors show
commitment to validating their model predictions with experi-
ments. Experimentally, they show that cancer cells can switch
their metabolism when specific inhibitors are used. For example,
the use of mitochondrial inhibitors such as oligomycin induces
an increase in glycolytic phenotype, and glycolytic inhibitor
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enhances the activity of AMPK and hence the oxidative pheno-
type. This metabolic plasticity could be thwarted with dual inhibi-
tion of both glycolytic and mitochondrial respiration. These results
are consistent with the model predictions and underscore the im-
portance of metabolic plasticity in cancer cell survival. Albeit per-
formed in a limited number of cell lines and experimental systems,
the experiments are sufficiently convincing so as to consider
the model results as biologically plausible. Furthermore, given the
widespread interest in targeting metabolism in cancer, such
experiments could lay the groundwork for rational design of
therapeutic strategies not only for effective drug combina-
tion, but also for realizing the ultimate goal of personalized
medicine.

Although one can always question the utility of mathematical
models, work like this provides a refreshing reminder that novel
biological insights and new testable hypotheses could be derived
from modeling approaches. Here, the insight is that the W/O
hybrid metabolic phenotype, because of the capability of tumor
cells to utilize various kinds of nutrients, enables tumors cells to
maintain redox homeostasis and support their survival and
proliferation, even under unfavorable conditions. Whether
the proposed W/O metabolic state applies to multiple cancer
types remains to be explored. It would also be interesting to
compare whether the W/O hybrid state defines a specific can-
cer subpopulation such as cancer stem cells.

Another intriguing result is the emergence of the metabolic
low-low phenotype, especially when the HIF-1 degradation rate is
high or the mtROS production is low (Fig.1 B, Right). This meta-
bolic state may be a new state that is drug induced and could
describe cancer cell subpopulations that withstand an initial and

continued drug challenge, a phenomenon commonly termed
drug tolerance. Mostly, drug tolerance is thought to be due to
quiescence (13) or senescence (14). More recently, entry of cancer
cells into a nonquiescent idling state of balanced division and
death was reported (15). It is tempting to speculate that
these idling cancer cells may exhibit repressed metabolism (i.e.,
low-low phenotype), which can be experimentally tested by mea-
suring their levels of glycolysis and oxidative phosphorylation.
Several reports point to the nonmutational nature of drug toler-
ance, and metabolic adaption like the emergence of the meta-
bolic low-low phenotypemay provide a mechanistic basis. Whether
the metabolic low-low phenotype describes most of the drug-
tolerant cancer cells remains to be examined, and given that
drug-tolerant populations act as a reservoir from which acquired-
resistance genetic mutations arise, functionally characterizing such
a phenotype might provide a rationale for therapeutic combina-
tions to eradicate them.

Cancer systems biology is rapidly coming of age. Jia et al. (6)
address an important unexplored avenue to enable complex net-
work modeling: a simplified coarse-grained approach to model-
ing complex metabolic networks, informed by bioinformatics
approaches, and validated by experiments. Its utility is supported
by novel biological insights that guide additional experimenta-
tion. Indeed the work by Jia et al. could have not been a better
endorsement for the adage that “all models are wrong but some
are useful” (16).
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